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• IR more symmetric than UV 
✦ IR fixed point 
✦ Accidental symmetries 

protection from radioactive decay 
Lorentz symmetry from the lattice

• Gauge symmetries  
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There are times when a theorist wishes for more symmetry:
• hierarchy 
• mass textures  
• suppression of FCNC

Are there other ways that approximate symmetries can emerge?

• “Schrödinger symmetry” (nonrelativistic conformal symmetry) 
• spin-flavor symmetries

Some evidence in low energy hadronic physics:

This talk: these approximate symmetries can be correlated with 
minimization of entanglement in scattering.



D. B. Kaplan          BAPTS         3/15/19

Emergent symmetries seen in the baryons: 

i. SU(4), SU(6) spin-flavor symmetry 

ii. SU(4) Wigner symmetry 

iii. Schrödinger symmetry 

iv. SU(16) (?!) in baryon octet
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SU(4), SU(6) spin-flavor symmetry (1960s)
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SU(6):

• Symmetry of non-relativistic quark model 
• Approximate symmetry apparent in nature: 

• masses 
• magnetic moments & transitions 
• semi-leptonic currents 
• meson-baryon couplings 
• NN scattering
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SU(4), SU(6) spin-flavor symmetry (1960s)

• Cannot be a symmetry of relativistic QFT (Coleman-Mandula) 
• For baryon-meson couplings, does follow from QCD in large-Nc limit  

Gervais, Sakita (1984);  Dashen, Manohar (1993), Dashen, Jenkins, Manohar (1994) 
Volume 315, number 3,4 PHYSICS LETTERS B 7 October 1993 

~,. ~ SS " ~  o~ ~ 

(a) (b) (e) 
Fig. 1. Diagrams contributing to ~N scattering. (c) is suppressed by 1/A~. relative to (a) and (b). 

matrix element in the nucleon can be written as 

(N[~y i75rav ' lX)  = g N e ( N l X i a l N ) ,  (1) 

where (NIX'~l N) and g are of order one. The coupling 
constant g has been factored out so that the normaliza- 
tion o f X  ia can be chosen conveniently. X i" is an oper- 
ator (or 4 × 4 matrix) defined on nucleon states which 
has a finite large-No limit. The pion-nucleon scatter- 
ing amplitude for 7ra(q) + N ( k )  --, at , (q,)  + N ( k ' )  
is (neglecting the third graph which is suppressed by 
l lU~ 2 ) 

At2 ~2 [~0 - i  - i - ' J  ' "  ~ XJ~X ;~ lx;~xJb] 
. . . .  q,o A '  

(2) 

where the amplitude is written in the form of an op- 
erator acting on nucleon states. Both initial and final 
nucleons are on-shell, so q0 = q,0. The product of the 
X's in eq. (2) then sums over the possible spins and 
isospins of the intermediate nucleon. Since f= ~ ,/N,., 
the overall amplitude is of order ,N~-, which violates 
unitarity, and also contradicts the large-N,, counting 
rules of Witten. Thus large-?v~ QCD with a I = J = 
1/2 nucleon multiplet interacting with a pion is an 
inconsistent field theory. There must be other states 
that cancel the order N~- amplitude in eq. (2) so that 
the total amplitude is order one, and consistent with 
unitarity. One can then generalize X ai to be an oper- 
ator on this degenerate set of baryon states, with ma- 
trix elements equal to the corresponding axial current 
matrix elements. With this generalization, the form 
ofeq. (2) is unchanged. Thus we obtain the first con- 
sistency condition for QCD, 

[ x i ~ , x  jb] = 0, (3) 

so that the axial currents are represented by a set of 
operators X ia that commute in the large-N,- limit. The 
solution of the constraint is non-trivial, because we 
also have the commutat ion relations 

[ j i ,  xJb] = i eqkX kb, [ I ~ , X  jb] = ieabcX jc, 

[ J ' , J J ]  = i e o k J  k, [ I~ , I  b] = i e ,bc l  ~, 

[Ia, j t] = 0, (4) 

since X i~ has spin one and isospin one. It is simple to 
prove that eqs. (3) and (4) form a non-semisimple Lie 
Algebra, and have no non-trivial finite dimensional 
representations [7 ]. 

The solutions of the consistency condition eq. (3) 
requires that there be an infinite tower of degener- 
ate baryon states, and also determines the ratios of 
the p ion-baryon couplings between the states. We will 
make one simplifying assumption in this letter; the de- 
generate baryon spectrum consists only of states I = 
J = 1/2, 3/2 . . . . .  where the sequence can be finite or 
infinite. (One can show that this is the minimal set of 
states that satisfies the consistency conditions [7].) 
The states will be denoted by [J, J3, I3). The reduced 
matrix element of .¥ai between baryon states can be 
written as 

, , i a  / 2 J  + 1 
( J ' , m  ,(,']A [J,m,(t) = x(J,J')v~-f;~_ 1 

;H i IH  I (~ a (~ /I  

where X ( J , J ' )  is a reduced matrix element. The 
normalization constant has been chosen so that 
X ( J , J ' )  = X ( J ' , J ) .  Since X ia is a tensor with 
spin one and isospin one, it can only couple states 
with AJ = 0, ±1, and the independent reduced ma- 
trix elements are X ( J , J )  and X ( J , J  + 1). Taking 
the matrix element of eq. (3) between l J, ;r/,(t) and 
[J', m', ~t'), and inserting a complete set of interme- 
diate states gives 

0 = Z (J ' '  ' ' ia (*1) 777 ,(~1X [J l ,m l ,  
Jlmuq 

× (J l ,ml , (~l[XJt ' ]J ,  m,(~) - (ia ~ j b ) .  (6) 

We will first show that eq. (6) has a unique solution 
Consider the case J '  = J + 1, where only intermediate 

426 
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• Large-Nc seems to also work in nuclear physics:  
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Fig. 3. The couplings for the Nijmegen NN potential in ref. [9] rescaled by fρ.
The values for this ratio predicted by large Nc QCD in eq. (4.3) are indicated by
lines, and the shaded regions are the size of the expected O(1/Nc) corrections to the
leading result. The five regions in the plot (separated by vertical dashed lines) are
(from left to right) the (I, S) = (0, 0), (1, 1), (1, 0), (0, 1), and gφ couplings.

potential do not correspond to single meson exchange at all, and the a2 in the Nijmegen

potential has a Gaussian propagator. The model subsumes such effects as 2-π exchange, ρπ

exchange, etc. within the phenomenological couplings gIS . Only the pseudoscalar meson

couplings are related to the physical meson-nucleon couplings, since the long distance part

of the NN potential is dominated by single meson exchange. Thus the agreement between

fig. 3 and the large-Nc prediction (4.3) contains more than the claim that meson-baryon

couplings obey the It = Jt rule. We take fig. 3 to provide encouraging evidence that our

large-Nc analysis of the NN interaction describes the qualitative features seen in nature.

5. The Central Potential and Wigner Supermultiplet Symmetry

It was suggested in ref. [7] that the approximate Wigner supermultiplet symmetry

observed in light nuclei could be explained by the 1/Nc expansion of QCD. Under the

Wigner symmetry SU(4)W , the four nucleon states p ↑, p ↓, n ↑ and n ↓ transform as the

four dimensional fundamental representation. Note that SU(4)W is distinct from the quark

model SU(4), and that the former cannot be realized as a symmetry at the quark level.

Nevertheless, ref. [7] argued that the 1/Nc expansion explains how SU(4)W symmetry

could emerge as an accidental symmetry in light nuclei. As that work only examined the

central part of the NN potential, it is worth reexamining the argument.

12

DBK, A. Manohar (1996)

• …and implies spin-flavor symmetries in low energy baryon-baryon 
interactions…  
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SU(2Nf) spin-flavor symmetries in low energy baryon-baryon interactions 
also follows from large-Nc   DBK, M.J. Savage (1995)

• Nf = 2 (nucleons & Δ)

1. Implications of spin-flavor symmetry in effective nuclear forces

Short distance nuclear forces relevant for low energy processes can be incorporated

into chiral Lagrangians in terms of local operators in a derivative expansion [1,2]. There

are two leading (dimension six) operators involving nucleons alone, given by

L6 = −1
2CS(N †N)2 − 1

2CT (N †σ⃗N)2 (1.1)

where N are isodoublet two-component spinors, and the σ⃗ are Pauli matrices. Higher

derivative operators account for the spin-orbit coupling, among other effects1. Including

the ∆ isobars in the theory leads to 18 independent dimension six operators allowed by spin

and isospin symmetry2. In order to discuss hypernuclei, or strangeness in dense matter,

one must consider SU(3) flavor multiplets — there are six independent leading operators

involving the baryon octet alone [3], while including the decuplet inflates the number to 28

independent operators. The number of independent dimension seven interactions is still

much greater.

Clearly, to make headway in a systematic effective field theory analysis of nuclear and

hypernuclear forces, it is desirable to find some simplifying principle. In this letter we

propose that among the baryon interactions, SU(4) spin-flavor symmetry for two flavors,

or SU(6) symmetry for three flavors should be a good approximation. We show how these

symmetries have a vastly simplifying effect on the dimension six interactions described

above, reducing both the 18 N−∆ interactions and the 28 octet-decuplet interactions down

to just two independent operators. We support our allegation that spin-flavor symmetry is

relevant to nuclear forces first by outlining its implications and by giving empirical evidence

in support of SU(4) in nuclei. Then we prove that these symmetries become exact in the

large-N limit of QCD.

1 In low energy nucleon-nucleon scattering the higher derivative terms will be less important

than the leading operator. However, many-body effects in large nuclei can enhance the importance

of subleading operators, such as the spin-orbit interaction.
2 It is simplest to count operators in the form (ψ1ψ2)(ψ3ψ4)

†, requiring (ψ1ψ2) and (ψ3ψ4) to

have the same spin and isospin quantum numbers. One finds the above two (NN)(NN)† operators;

zero operators of the form (NN)(N∆)†; two (NN)(∆∆)†, four (N∆)(N∆)†, two (N∆)(∆∆)†,

and eight (∆∆)(∆∆)† operators.

1

Under SU(2f) symmetry the two spin states and f flavors of quarks transforming as

the 2f dimensional defining representation. For N = 3, the lowest lying baryons have the

quantum numbers of three quarks in an S-wave, transforming as a three index symmetric

tensor Ψµνρ under SU(2f). For f = 2, Ψ is the 20-dimensional representation of SU(4),

comprising of the four N and sixteen ∆ spin/isospin states; for f = 3, Ψ is the 56-

dimensional SU(6) representation containing the J = 1
2 octet and the J = 3

2 decuplet. In

either case one finds that there are only two SU(2f) invariant dimension six operators.

These can be written in terms of the baryon fields Ψ as

L6 = −
1

f2
π

[

a(Ψ†
µνρΨ

µνρ)2 + bΨ†
µνσΨµντΨ†

ρδτΨρδσ
]

, (1.2)

where fπ = 132 MeV is the pion decay constant.

Eq. (1.2) can be expressed in terms of the more familiar fields by writing each SU(2f)

index µ as a pair of flavor and spin indices (iα) under SU(f) × SU(2)J , and then by

projecting out components with the desired SU(f) × SU(2)J transformation properties.

In this way one finds for two flavors

Ψ(αi)(βj)(γk) = ∆ijk
αβγ +

1√
18

(

N i
αϵjkϵβγ + N j

βϵikϵαγ + Nk
γ ϵijϵαβ

)

, (1.3)

and for three flavors

Ψ(αi)(βj)(γk) = T ijk
αβγ +

1√
18

(

Bi
m,αϵmjkϵβγ + Bj

m,βϵmkiϵγα + Bk
m,γϵmijϵαβ

)

. (1.4)

In the above expressions N , ∆, B, and T are the nucleon, isobar, octet and decuplet fields

respectively. Indices i, j . . . denote flavor indices while α, β . . . are spin indices. ∆ and

T are totally symmetric tensors separately in flavor and spin; B is a traceless matrix in

flavor. The normalization factors of 1/
√

18 are fixed so that the baryon number operator

equals (Ψ†
µνρΨ

µνρ).

By plugging expressions (1.3), (1.4) into our SU(2f) symmetric Lagrangian (1.2) it

is possible to determine all of the leading short range interactions between the J = 1
2 and

J = 3
2 baryons in terms of the two coefficients a and b. We spare the reader all of the

results, and focus on predictions for interactions solely involving the J = 1
2 baryons. For
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2

• Nf = 2 (restricted to nucleons)

➢ general  Weinberg (1990)

➢ SU(4) prediction

two flavors, the SU(4) symmetry yields predictions for the Weinberg coefficients of eq.

(1.1) in terms of a and b:

CS =
2(a − b/27)

f2
π

, CT = 0 (two flavors). (1.5)

For three flavors, SU(6) symmetry predicts the six Savage-Wise (SW) coefficients

c1 . . . c6 [3] for the interactions involving four baryon octet fields:

c1 = − 7
27b

c2 = 1
9b

c3 = 10
81b

c4 = −14
81b

c5 = a + 2
9b

c6 = −1
9b

(three flavors) . (1.6)

Given that CS = (2c1 + c2 + 2c5 + c6)/f2
π and CT = (c2 + c6)/f2

π , the SU(6) prediction

(1.6) contains the SU(4) prediction (1.5). Note that the contributions proportional to b

are quite suppressed. In fact, as we discuss below, in the large-N limit of QCD, both a/f2
π

and b/f2
π are O(N), while there are O(1) (∼ 30%) violations to the SU(6) predictions.

Similarly one expects ∼ 30% violations due to SU(3) breaking by the strange quark mass.

Thus the contributions proportional to b in the above relations are subleading, and it is

consistent to take b = 0 in eq. (1.6) to leading order in N . Note that with the b terms

negligible, the self-interactions among the J = 1
2 octet baryons are invariant under an

accidental SU(16) symmetry. For two flavors, the prediction CT = 0 implies an accidental

SU(4) symmetry among the nucleon self-interactions.

2. Evidence for SU(4) symmetry in nuclear physics

Why should one believe that there is an approximate SU(2f) symmetry in the short-

range nuclear forces? We first give empirical evidence for SU(4) symmetry in nuclear

physics; we then show that in the large-N limit of QCD, SU(4) relations are accurate to

order 1/N2 (∼ 10%), while SU(6) relations are accurate to O(1/N) (∼ 30%) and O(ms).

The testable consequence of SU(4) symmetry is the prediction (1.5) that CT = 0,

which implies the existence of an accidental symmetry in low energy nucleon interactions.

This symmetry is Wigner’s “supermultiplet symmetry” [4], which we will denote SU(4)sm;

3
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Is this an approximate symmetry of nature?

Predicts equal scattering lengths for 1S0 , 3S1   NN scattering lengths

1S0 scattering length =  -23.7 fm ~ 1/8 MeV

3S1 scattering length =  + 5.4 fm ~ 1/35 MeV

A ' 4⇡
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very small for both
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Better diagnostic: accidental SU(4)Wigner symmetry

1. Implications of spin-flavor symmetry in effective nuclear forces

Short distance nuclear forces relevant for low energy processes can be incorporated

into chiral Lagrangians in terms of local operators in a derivative expansion [1,2]. There

are two leading (dimension six) operators involving nucleons alone, given by

L6 = −1
2CS(N †N)2 − 1

2CT (N †σ⃗N)2 (1.1)

where N are isodoublet two-component spinors, and the σ⃗ are Pauli matrices. Higher

derivative operators account for the spin-orbit coupling, among other effects1. Including

the ∆ isobars in the theory leads to 18 independent dimension six operators allowed by spin

and isospin symmetry2. In order to discuss hypernuclei, or strangeness in dense matter,

one must consider SU(3) flavor multiplets — there are six independent leading operators

involving the baryon octet alone [3], while including the decuplet inflates the number to 28

independent operators. The number of independent dimension seven interactions is still

much greater.

Clearly, to make headway in a systematic effective field theory analysis of nuclear and

hypernuclear forces, it is desirable to find some simplifying principle. In this letter we

propose that among the baryon interactions, SU(4) spin-flavor symmetry for two flavors,

or SU(6) symmetry for three flavors should be a good approximation. We show how these

symmetries have a vastly simplifying effect on the dimension six interactions described

above, reducing both the 18 N−∆ interactions and the 28 octet-decuplet interactions down

to just two independent operators. We support our allegation that spin-flavor symmetry is

relevant to nuclear forces first by outlining its implications and by giving empirical evidence

in support of SU(4) in nuclei. Then we prove that these symmetries become exact in the

large-N limit of QCD.

1 In low energy nucleon-nucleon scattering the higher derivative terms will be less important

than the leading operator. However, many-body effects in large nuclei can enhance the importance

of subleading operators, such as the spin-orbit interaction.
2 It is simplest to count operators in the form (ψ1ψ2)(ψ3ψ4)

†, requiring (ψ1ψ2) and (ψ3ψ4) to

have the same spin and isospin quantum numbers. One finds the above two (NN)(NN)† operators;

zero operators of the form (NN)(N∆)†; two (NN)(∆∆)†, four (N∆)(N∆)†, two (N∆)(∆∆)†,

and eight (∆∆)(∆∆)† operators.
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Fig. 1. Energy level diagram for 18O , 18F and 18Ne. The n − p
mass difference and coulomb effects have been removed. The energies
in square brackets are relative to the 18F ground state. β-decays to
various states are indicated by arrows.

a probability of 87% [15]; the “missing” 13% is largely due to the spin-orbit interaction.

The β-decay strength of transitions between states of this supermultiplet along with the

strengths of transitions to states outside the supermultiplet are shown in Table 1 [16].

It is seen from the first three entries of Table 1 that the Gamow-Teller transitions (∝

σ⃗τ+) to states within the SU(4) supermultiplet are of similar strength as the superallowed

transition (∝ τ+), 18Ne
β+

−→18F (1.04MeV), despite the fact that they are not related by

isospin. Further, it is clear from the last two entries that the decays to states outside the

supermultiplet are much weaker than those to states within the supermultiplet. To be

quantitative, we give the ratio of matrix elements (corrected for Coulomb interactions, gA,

and final state multiplicities) relative to the superallowed transition as the parameter R in

the last column. Isospin predicts equality between the first two entries; SU(4)sm predicts

equality between the first three entries. Allowing for a 13% effect due to contamination of

6

Example of evidence for SU(4)Wigner : β-decay in A=18 isobars
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(1,0) + (0,1) = 6 of SU(4)
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6
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Fig. 1. Energy level diagram for 18O , 18F and 18Ne. The n − p
mass difference and coulomb effects have been removed. The energies
in square brackets are relative to the 18F ground state. β-decays to
various states are indicated by arrows.

a probability of 87% [15]; the “missing” 13% is largely due to the spin-orbit interaction.

The β-decay strength of transitions between states of this supermultiplet along with the

strengths of transitions to states outside the supermultiplet are shown in Table 1 [16].

It is seen from the first three entries of Table 1 that the Gamow-Teller transitions (∝

σ⃗τ+) to states within the SU(4) supermultiplet are of similar strength as the superallowed

transition (∝ τ+), 18Ne
β+

−→18F (1.04MeV), despite the fact that they are not related by

isospin. Further, it is clear from the last two entries that the decays to states outside the

supermultiplet are much weaker than those to states within the supermultiplet. To be

quantitative, we give the ratio of matrix elements (corrected for Coulomb interactions, gA,

and final state multiplicities) relative to the superallowed transition as the parameter R in

the last column. Isospin predicts equality between the first two entries; SU(4)sm predicts

equality between the first three entries. Allowing for a 13% effect due to contamination of
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SU(4)w allowed matrix elements ~10 x greater than SU(4)w disallowed

Example of evidence for SU(4)Wigner : β-decay in A=18 isobars
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Baryon-baryon interactions  Nf=3 / SU(6) spin-flavor symmetry  
(also predicted by large-Nc)

Under SU(2f) symmetry the two spin states and f flavors of quarks transforming as

the 2f dimensional defining representation. For N = 3, the lowest lying baryons have the

quantum numbers of three quarks in an S-wave, transforming as a three index symmetric

tensor Ψµνρ under SU(2f). For f = 2, Ψ is the 20-dimensional representation of SU(4),

comprising of the four N and sixteen ∆ spin/isospin states; for f = 3, Ψ is the 56-

dimensional SU(6) representation containing the J = 1
2 octet and the J = 3

2 decuplet. In

either case one finds that there are only two SU(2f) invariant dimension six operators.

These can be written in terms of the baryon fields Ψ as

L6 = −
1

f2
π

[

a(Ψ†
µνρΨ

µνρ)2 + bΨ†
µνσΨµντΨ†

ρδτΨρδσ
]

, (1.2)

where fπ = 132 MeV is the pion decay constant.

Eq. (1.2) can be expressed in terms of the more familiar fields by writing each SU(2f)

index µ as a pair of flavor and spin indices (iα) under SU(f) × SU(2)J , and then by

projecting out components with the desired SU(f) × SU(2)J transformation properties.

In this way one finds for two flavors

Ψ(αi)(βj)(γk) = ∆ijk
αβγ +

1√
18

(

N i
αϵjkϵβγ + N j

βϵikϵαγ + Nk
γ ϵijϵαβ

)

, (1.3)

and for three flavors

Ψ(αi)(βj)(γk) = T ijk
αβγ +

1√
18

(

Bi
m,αϵmjkϵβγ + Bj

m,βϵmkiϵγα + Bk
m,γϵmijϵαβ

)

. (1.4)

In the above expressions N , ∆, B, and T are the nucleon, isobar, octet and decuplet fields

respectively. Indices i, j . . . denote flavor indices while α, β . . . are spin indices. ∆ and

T are totally symmetric tensors separately in flavor and spin; B is a traceless matrix in

flavor. The normalization factors of 1/
√

18 are fixed so that the baryon number operator

equals (Ψ†
µνρΨ

µνρ).

By plugging expressions (1.3), (1.4) into our SU(2f) symmetric Lagrangian (1.2) it

is possible to determine all of the leading short range interactions between the J = 1
2 and

J = 3
2 baryons in terms of the two coefficients a and b. We spare the reader all of the

results, and focus on predictions for interactions solely involving the J = 1
2 baryons. For

2
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Low-energy EFT for just the octet:

L = �c1TrB
†
iBiB

†
jBj � c2TrB

†
iBjB

†
jBi � c3TrB

†
iB

†
jBiBj

�c4TrB
†
iB

†
jBjBi � c5TrB

†
iBiTrB

†
jBj � c6TrB

†
iBjTrB

†
jBi

 M.J. Savage, M.B. Wise (1995)

Bi =

0

B@

⌃0
p
2
+ ⇤p

6
⌃+ p
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p
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n
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SU(6) prediction:
c1 = � 7

27
b , c2 =

1

9
b , c3 =

10

81
b ,

c4 = �14

81
b , c5 = a+

2

9
b , c6 = �1

9
b .

L = �c1TrB
†
iBiB

†
jBj � c2TrB

†
iBjB

†
jBi � c3TrB

†
iB

†
jBiBj

�c4TrB
†
iB

†
jBjBi � c5TrB

†
iBiTrB

†
jBj � c6TrB

†
iBjTrB

†
jBi

Does this work?  Look at lattice data 
• NPLQCD collaboration, 2015 
• equal quark masses 
• mπ = 806 MeV
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30

Case c1 c2 c3 c4 c5 c6

Unnatural 0.051(+53)
(�64) 0.073(+64)

(�54) 0.088(+53)
(�55) 0.088(+58)

(�55) 1.892(+59)
(�50) �0.013(+54)

(�63)

Natural 5(+17)
(�12) 7(+16)

(�13) 5(+12)
(�8) 5(+11)

(�12) �19(+12)
(�17) �4(+14)

(�16)

1

TABLE VI: Values of the coefficients of the LO SU(3)-symmetric interactions obtained by solving Eqs. (29)-
(34) for the unnatural case with µ = m⇡, and for the natural case with µ = 0. The coefficients are expressed
in units of [ 2⇡

MB
], with MB being the baryon mass in this calculation, expressed in lattice units.

in the 8S and 1 irreps, and provides further constraints on the SW coefficients,

(�
2c1
3

+
2c2
3

�
5c3
6

+
5c4
6

+ c5 � c6)
�1

� µ = �0.08(4) l.u. (33)

(�
c1
3

+
c2
3

�
8c3
3

+
8c4
3

+ c5 � c6)
�1

� µ = �0.08(4) l.u. (34)

Setting µ = 0 recovers the results for natural systems.
Eqs. (29)-(34) are solved to determine all six SW coefficients for unnatural interactions within the

KSW-vK power counting at a renormalization scale of µ = m⇡, and for natural interactions through
a tree-level expansion of the scattering amplitude, see Table VI. As is evident from these values,
shown in Fig. 16, the unnatural scenario provides the most stringent constraints on the coefficients.
In this case, the value of all SW coefficients except for c5 are consistent with zero, a manifestation
of the SU(16) spin-flavor symmetry in the LO SU(3) interactions, i.e., the a � b/3 hierarchy in
the SU(6) spin-flavor symmetric interactions. With these results, and the binding energies of light
hypernuclei [20], ongoing ab initio many-body calculations using the LQCD input at this value of
the quark masses [59–62] can be extended to systems containing hyperons. Appendix B is devoted
to summarizing the constraints obtained for the LO scattering amplitudes in flavor space.

Natural caseUnnatural case @ µ = m⇡

c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6
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FIG. 16: A comparison of the coefficients of the LO SU(3)-symmetric interactions. The left panel corre-
sponds to the unnatural case with µ = m⇡, while the right panel represents the natural case with µ = 0,
corresponding to a tree-level expansion of the scattering amplitudes. The coefficients are expressed in units
of [ 2⇡

MB
], with MB being the baryon mass in this calculation, expressed in lattice units.
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Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SUð3Þ
flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical
strange quark mass and corresponding to a pion mass of ≈806 MeV). Specifically, the S-wave scattering
phase shifts of two-baryon systems at low energies are obtained with the application of Lüscher’s
formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle
scattering amplitudes below the relevant inelastic thresholds. The leading-order low-energy scattering
parameters in the two-nucleon systems that were previously obtained at these quark masses are determined
with a refined analysis, and the scattering parameters in two other channels containing the Σ and Ξ baryons
are constrained for the first time. It is found that the values of these parameters are consistent with an
approximate SUð6Þ spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the
large-Nc limit of QCD. The two distinct SUð6Þ-invariant interactions between two baryons are constrained
for the first time at this value of the quark masses, and their values indicate an approximate accidental
SUð16Þ symmetry. The SUð3Þ irreps containing the NNð1S0Þ, NNð3S1Þ and 1ffiffi

2
p ðΞ0nþ Ξ−pÞð3S1Þ channels

unambiguously exhibit a single bound state, while the irrep containing the Σþpð3S1Þ channel exhibits a
state that is consistent with either a bound state or a scattering state close to threshold. These results are in
agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-
nucleon bound states at this value of the quark masses.
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I. INTRODUCTION

It is speculated that hyperons, the counterparts of nucleons
in which some of the valence quarks in the nucleon are
replaced by strange quarks, play an important role in the
composition of dense matter, such as that in the interior of
neutron stars (for a comprehensive review, see Ref. [1]). The
interactions between two nucleons are precisely constrained
by experiment over a wide range of energies. However,
those between a nucleon and a hyperon, or between two
hyperons, are not well known [2–19], and are challenging
to probe experimentally because of the short lifetime of
hyperons and hypernuclei. Precise information on how
hyperons interact, in particular in a nuclear medium, is
essential to establish their effects on the equation of state of
dense matter and other observables. On the theoretical side,
the only reliable method with which to determine these
interactions is to calculate them from the underlying strong
interactions among quarks and gluons described by quantum

chromodynamics (QCD). This can be achieved using the
nonperturbative method of lattice QCD (LQCD), which
involves numerically evaluating path integrals representing
Euclidean correlation functions using Monte Carlo sampling
methods. This approach is taken in this work to constrain the
scattering amplitudes of several classes of nucleon-nucleon,
hyperon-nucleon and hyperon-hyperon systems, albeit in a
world that exhibits an exact SUð3Þ flavor symmetry, with
degenerate light and strange quark masses tuned to produce
pions and kaons with masses of ≈806 MeV. The calcu-
lations are performed in the absence of quantum electrody-
namics (QED). This work extends our previous studies of
such systems using the same ensembles of gauge-field
configurations [20,21], and complements previous and
ongoing studies of hyperon interactions using LQCD, see
for example Refs. [19,22–35].
Lüscher’s finite-volume (FV) methodology [36–51] is

used to constrain the scattering amplitudes of two-baryon
systems below the relevant inelastic thresholds from the
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Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons
at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in na-
ture (equal to that of the physical strange quark mass and corresponding to a pion mass of
⇡ 806 MeV). Specifically, the S-wave scattering phase shifts of two-baryon systems at low
energies are obtained with the application of Lüscher’s formalism, mapping the energy eigen-
values of two interacting baryons in a finite volume to the two-particle scattering amplitudes
below the relevant inelastic thresholds. The values of the leading-order low-energy scattering
parameters in the irreducible representations of SU(3) are consistent with an approximate
SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the
large-Nc limit of QCD. The two distinct SU(6)-invariant interactions between two baryons
are constrained at this value of the quark masses, and their values indicate an approximate
accidental SU(16) symmetry. The SU(3) irreps containing the NN (1S0), NN (3S1) and
1p
2
(⌅0n + ⌅�p) (3S1) channels unambiguously exhibit a single bound state, while the irrep

containing the ⌃+p (3S1) channel exhibits a state that is consistent with either a bound
state or a scattering state close to threshold. These results are in agreement with the previ-
ous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound
states at this value of the quark masses.

PACS numbers: 11.15.Ha, 12.38.Gc, 12.38.-t, 21.30.Fe, 13.75.Cs, 13.85.-t.

I. INTRODUCTION

It is speculated that hyperons, the counterparts of nucleons in which some of the valence quarks
in the nucleon are replaced by strange quarks, play an important role in the composition of dense
matter, such as that in the interior of neutron stars (for a comprehensive review, see Ref. [1]).
The interactions between two nucleons are precisely constrained by experiment over a wide range
of energies. However, those between a nucleon and a hyperon, or between two hyperons, are not
well known [2–19], and are challenging to probe experimentally because of the short lifetime of
hyperons and hypernuclei. Precise information on how hyperons interact, in particular in a nuclear
medium, is essential to establish their effects on the equation of state of dense matter and other
observables. On the theoretical side, the only reliable method with which to determine these
interactions is to calculate them from the underlying strong interactions among quarks and gluons
described by quantum chromodynamics (QCD). This can be achieved using the non-perturbative
method of lattice QCD (LQCD), which involves numerically evaluating path integrals representing
Euclidean correlation functions using Monte Carlo sampling methods. This approach is taken
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NPLQCD results: 
• Only c5 ≠ 0 
• Near critical value for large scattering lengths

Similar to Nf=2 large-Nc result:

1. Implications of spin-flavor symmetry in effective nuclear forces

Short distance nuclear forces relevant for low energy processes can be incorporated

into chiral Lagrangians in terms of local operators in a derivative expansion [1,2]. There

are two leading (dimension six) operators involving nucleons alone, given by

L6 = −1
2CS(N †N)2 − 1

2CT (N †σ⃗N)2 (1.1)

where N are isodoublet two-component spinors, and the σ⃗ are Pauli matrices. Higher

derivative operators account for the spin-orbit coupling, among other effects1. Including

the ∆ isobars in the theory leads to 18 independent dimension six operators allowed by spin

and isospin symmetry2. In order to discuss hypernuclei, or strangeness in dense matter,

one must consider SU(3) flavor multiplets — there are six independent leading operators

involving the baryon octet alone [3], while including the decuplet inflates the number to 28

independent operators. The number of independent dimension seven interactions is still

much greater.

Clearly, to make headway in a systematic effective field theory analysis of nuclear and

hypernuclear forces, it is desirable to find some simplifying principle. In this letter we

propose that among the baryon interactions, SU(4) spin-flavor symmetry for two flavors,

or SU(6) symmetry for three flavors should be a good approximation. We show how these

symmetries have a vastly simplifying effect on the dimension six interactions described

above, reducing both the 18 N−∆ interactions and the 28 octet-decuplet interactions down

to just two independent operators. We support our allegation that spin-flavor symmetry is

relevant to nuclear forces first by outlining its implications and by giving empirical evidence

in support of SU(4) in nuclei. Then we prove that these symmetries become exact in the

large-N limit of QCD.

1 In low energy nucleon-nucleon scattering the higher derivative terms will be less important

than the leading operator. However, many-body effects in large nuclei can enhance the importance

of subleading operators, such as the spin-orbit interaction.
2 It is simplest to count operators in the form (ψ1ψ2)(ψ3ψ4)

†, requiring (ψ1ψ2) and (ψ3ψ4) to

have the same spin and isospin quantum numbers. One finds the above two (NN)(NN)† operators;

zero operators of the form (NN)(N∆)†; two (NN)(∆∆)†, four (N∆)(N∆)†, two (N∆)(∆∆)†,

and eight (∆∆)(∆∆)† operators.

1

X
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in support of SU(4) in nuclei. Then we prove that these symmetries become exact in the

large-N limit of QCD.

1 In low energy nucleon-nucleon scattering the higher derivative terms will be less important

than the leading operator. However, many-body effects in large nuclei can enhance the importance

of subleading operators, such as the spin-orbit interaction.
2 It is simplest to count operators in the form (ψ1ψ2)(ψ3ψ4)

†, requiring (ψ1ψ2) and (ψ3ψ4) to

have the same spin and isospin quantum numbers. One finds the above two (NN)(NN)† operators;

zero operators of the form (NN)(N∆)†; two (NN)(∆∆)†, four (N∆)(N∆)†, two (N∆)(∆∆)†,

and eight (∆∆)(∆∆)† operators.

1

X
• More symmetric than SU(6)  [b ≈ 0]  
• EFT possesses SU(16) analog of SU(4)Wigner  
• Near critical value for large scattering lengths — conformal symmetry

But:

Not large-Nc predictions
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Nf=2 Nf=3

SU(4)Wigner SU(16)NPLQCD

~conformal ~conformal

No known reason for these symmetries

…but correlated with low entanglement
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When two systems, of which we know the states by their respective 
representatives, enter into temporary physical interaction due to 
known forces between them, and when after a time of mutual 
influence the systems separate again, then they can no longer be 
described in the same way as before, viz. by endowing each of them 
with a representative of its own. I would not call that one but rather 
the characteristic trait of quantum mechanics, the one that enforces its 
entire departure from classical lines of thought. By the interaction the 
two representatives (or wave-functions) have become entangled. 

555

DISCUSSION OF PROBABILITY RELATIONS BETWEEN
SEPARATED SYSTEMS

BY E. SCHRODINGER

[Communicated by Mr M. BORN]

[Received 14 August, read 28 October 1935]

1. When two systems, of which we know the states by their respective repre-
sentatives, enter into temporary physical interaction due to knownforces between
them, and when after a time of mutual influence the systems separate again, then
they can no longer be described in the same way as before, viz. by endowing each
of them with a representative of its own. I would not call that one but rather the
characteristic trait of quantum mechanics," the one that enforces its entire
departure from classical lines of thought. By the interaction the two repre-
sentatives (or ^-functions) have become entangled. To disentangle them we must
gather further information by experiment, although we knew as much as any-
body could possibly know about all that happened. Of either system, taken
separately, all previous knowledge may be entirely lost, leaving us but one
privilege: to restrict the experiments to one only of the two systems. After re-
establishing one representative by observation, the other one can be inferred
simultaneously. In what follows the whole of this procedure will be called the
disentanglement. Its sinister importance is due to its being involved in every
measuring process and therefore forming the basis of the quantum theory of
measurement, threatening us thereby with at least a regressus in infinitum, since
it will be noticed that the procedure itself involves measurement.

Another way of expressing the peculiar situation is: the best possible knowledge
of a whole does not necessarily include the best possible knowledge of all its parts,
even though they may be entirely separated and therefore virtually capable of
being " best possibly known ", i.e. of possessing, each of them, a representative of
its own. The lack of knowledge is by no means due to the interaction being in-
sufficiently known—at least not in the way that it could possibly be known more
completely—it is due to the interaction itself.

Attention has recently* been called to the obvious but very disconcerting fact
that even though we restrict the disentangling measurements to one system, the
representative obtained for the other system is by no means independent of the
particular choice of observations which we select for that purpose and which by

* A. Einstein, B. Podolsky and N. Rosen, Phya. Rev. 47 (1935), 777.

D7 C C7 3 3 34 7 3D :DD C  53 4 697 9 5 7 D7 C :DD C 6  9  0
3676 :DD C  53 4 697 9 5 7 1 7 C D 23C: 9D . 4 3 7C /3 3D C 4 75D D D:7 ,3 4 697 , 7



D. B. Kaplan          BAPTS         3/15/19

EPR 
LOCAL  

REALITY  
ASSUMPTION



D. B. Kaplan          BAPTS         3/15/19

How to quantify entanglement?



D. B. Kaplan          BAPTS         3/15/19

How to quantify entanglement?
Quantum entropy:   

S = - Tr ρ ln ρ,     ρ = density matrix



D. B. Kaplan          BAPTS         3/15/19

How to quantify entanglement?
Quantum entropy:   

S = - Tr ρ ln ρ,     ρ = density matrix

E.g. pure state: | i = | "x #y i

⇢̂ = | ih |

⇢ =

0

B@
1 0 . . .
0 0 . . .
...

...
. . .

1

CA
S = 0

➤ rank 1



D. B. Kaplan          BAPTS         3/15/19

How to quantify entanglement?
Quantum entropy:   

S = - Tr ρ ln ρ,     ρ = density matrix

E.g. pure state: | i = | "x #y i

⇢̂ = | ih |

⇢ =

0

B@
1 0 . . .
0 0 . . .
...

...
. . .

1

CA
S = 0

➤ rank 1

E.g. mixed state: 

S = ln 2 

➤ rank 2
⇢ =

1

2

0

BBB@

1 0 0 . . .
0 1 0 . . .
0 0 0 . . .
...

...
...

. . .

1

CCCA



D. B. Kaplan          BAPTS         3/15/19

How to quantify entanglement?
Quantum entropy:   

S = - Tr ρ ln ρ,     ρ = density matrix

E.g. pure state: | i = | "x #y i

⇢̂ = | ih |

⇢ =

0

B@
1 0 . . .
0 0 . . .
...

...
. . .

1

CA
S = 0

➤ rank 1

E.g. mixed state: 

S = ln 2 

➤ rank 2
⇢ =

1

2

0

BBB@

1 0 0 . . .
0 1 0 . . .
0 0 0 . . .
...

...
...

. . .

1

CCCA



D. B. Kaplan          BAPTS         3/15/19

H = HA x HB

A

B

Reduced density matrix:

Factorizable Hilbert space:

⇢A = TrB ⇢

⇢B = TrA ⇢
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H = HA x HB

A

B

Reduced density matrix:

Factorizable Hilbert space:

⇢A = TrB ⇢

⇢B = TrA ⇢

Pure state on H — typically ρA, ρB  will represent mixed states, reflected in 
entropy:

S = 0 , SA = SB 6= 0

Shows that systems A and B are entangled 
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Is there a connection between entanglement and dynamics?

Yes: for many-body systems, QFTs: when A, B correspond to 
spatial regions

|nx1, nx2, nx3, nx4, … ny1, ny2, ny3, … >

A B

Observed that ground states seem to obey area-law entanglement

SA = SB / area of shared boundary

A

B

What is special about position 
coordinates?

Hamiltonian is local 
Correlations fall off with |x-y|
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Entanglement knows about dynamics

In a strongly coupled system with composite particles (eg, QCD) can 
entanglement help determine their wave functions and interactions 
(and hence their symmetries)?

Quantify the amount of entanglement in the S-matrix
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How to quantify entanglement of a N-N scattering process?

One way (PRL 122, 102001 (2019), arXiv: 1812.03138): 

• Start with two non-identical baryon flavors with spin up  
(pure state, zero entropy) 

| "i1 | "i2

• Rotate the two spins independently, this is the in state  
(pure state, zero entropy) 

R(⌦1)| "i1 R(⌦2)| "i2

• Compute the out-state using the S-matrix

• Compute the reduced density matrix ρ1  for the out-state

• Define the entanglement power for the S-matrix:
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Entanglement suppression in the strong interaction S-matrix is shown to be correlated with ap-
proximate spin-flavor symmetries that are observed in low-energy baryon interactions, the Wigner
SU(4) symmetry for two flavors and an SU(16) symmetry for three flavors. We conjecture that
dynamical entanglement suppression is a property of the strong interactions in the infrared, giving
rise to these emergent symmetries and providing powerful constraints on the nature of nuclear and
hypernuclear forces in dense matter.

Understanding approximate global symmetries in the
strong interactions has played an important historical
role in the development of the theory of Quantum Chro-
modynamics (QCD). Baryon number symmetry arises in
QCD because it is impossible to include a marginal or
relevant interaction consistent with Lorentz and gauge
symmetry which violates baryon number, while the ax-
ial and vector flavor symmetries are understood to be
due to the small ratio of quark masses (and their di↵er-
ences) to the QCD scale. The approximate low-energy
SU(2nf ) spin-flavor symmetry for nf = 2, 3 flavors which
relates spin-1/2 and spin-3/2 baryons can be understood
as arising at leading order (LO) in the large-Nc expan-
sion, where Nc is the number of colors [1, 2]. In low-
energy nuclear physics, a di↵erent spin-flavor symmetry
is observed in the structure of light-nuclei and their �-
decay rates, namely Wigner’s SU(4) symmetry, where
the two spin states of the two nucleons transform as
the 4-dimensional fundamental representation [3–5]. It
has been shown that this symmetry also arises from the
large-Nc expansion at energies below the � mass [6–8].
The agreement of large-Nc predictions with nuclear phe-
nomenology has been extended to higher-order interac-
tions [9–12], three-nucleon systems [13–15], and to stud-
ies of hadronic parity violation [16–18]. Recently, how-
ever, lattice QCD computations for nf = 3 have revealed
an emergent SU(16) symmetry in low-energy interactions
of the baryon octet—analogous to Wigner’s SU(4), but
with the two spin states of the eight baryons transforming
as the 16-dimensional representation of SU(16) [19]. This
low energy symmetry has been lacking an explanation
from QCD. In this Letter, we show that both Wigner’s
SU(4) symmetry for nf = 2 and SU(16) for nf = 3
correspond to fixed lines of minimal quantum entangle-
ment in the S-matrix for baryon-baryon scattering, and
we propose entanglement suppression to be a dynami-
cal property of QCD and the origin of these emergent
symmetries 1.

1 A principle of maximum entanglement has been previously pro-
posed to constrain quantum electrodynamics in Ref. [20].

Of the many features of quantum mechanics and quan-
tum field theory (QFT) that dictate the behavior of sub-
atomic particles, entanglement and its associated non-
locality are perhaps the most striking in their contrast
to everyday experience. The degree to which a system
is entangled, or its deviation from tensor-product struc-
ture, provides a measure of how “non-classical” it is. The
importance of entanglement as a feature of quantum the-
ory has been known since the work of Einstein, Podolsky
and Rosen [21] and later pioneering papers [22–24], and
has become a core ingredient in quantum information
science, communication and perhaps in understanding
the very fabric of spacetime [25–27]. Despite this long
history, the implications of entanglement in QFTs, e.g.,
Refs. [28–39], and in particular for experimental observ-
ables in high-energy and heavy-ion collisions are only now
starting to be explored [20, 40–49]. Here we study the
role of entanglement in low-energy nuclear interactions.
In general, a low-energy scattering event can entan-

gle position, spin, and flavor quantum numbers, and it
is therefore natural to assign an entanglement power to
the S-matrix for nucleon-nucleon scattering. We choose
to define the entanglement power of the S-matrix in a
two-particle spin space [50, 51], noting that this choice
is not unique and that others will be explored elsewhere
[52]. This is determined by the action of the S-matrix
on an incoming two-particle tensor product state with
randomly-oriented spins, | ini = R̂(⌦1)|"i1 ⌦ R̂(⌦2)|"i2,
where R̂(⌦j) is the rotation operator acting in the jth

spin- 1
2
space, and all other quantum numbers associated
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FIG. 1. The entanglement power, E(Ŝ), of the S-matrix as a
function of p, the center-of-mass nucleon momentum. The 1S0

and 3S1 phase shifts used to calculate E(Ŝ) were taken from
four di↵erent models [53–57] to provide a näıve estimate of
systematic uncertainties. Data for this figure may be found
in Table II in the supplemental material.

| outih out| with | outi = Ŝ| ini. By describing the av-
erage action of Ŝ to transition a tensor-product state to
an entangled state, the entanglement power expresses a
state-independent entanglement measure that vanishes
when | outi remains a tensor product state for any | ini.

Following the analysis of Ref. [20], we consider the
spin-space entanglement of two distinguishable particles,
the proton and neutron for nf = 2 QCD. Neglecting the
small tensor-force-induced mixing of the 3S1 channel with
the 3D1 channel, the S-matrix for low-energy scattering
below inelastic threshold in these sectors can be decom-
posed as

Ŝ =
1

4

�
3ei2�1 + ei2�0

�
1̂ +

1

4

�
ei2�1 � ei2�0

�
�̂ · �̂, (2)

where 1̂ = Î2 ⌦ Î2 and �̂ · �̂ =
3P

↵=1

�̂↵ ⌦ �̂↵. It follows

that the entanglement power of Ŝ is

E(Ŝ) = 1

6
sin2 (2(�1 � �0)) , (3)

which vanishes when �1 � �0 = m⇡
2
for any integer m.

This includes the SU(4) symmetric case �1 = �0 where
the coe�cient of �̂·�̂ vanishes. Special fixed points where
the entanglement power vanishes occur when the phase
shifts both vanish, �1 = �0 = 0, or are both at unitarity,
�1 = �0 = ⇡

2
, or when �1 = 0, �0 = ⇡

2
or �1 = ⇡

2
, �0 =

0. The S-matrices at these fixed points with vanishing
entanglement power are Ŝ = ±1̂ and ±(1̂+ �̂ · �̂)/2 2.

The entanglement power in nature is plotted in Fig. 1
as a function of the center-of-mass nucleon momentum,
p, up to pion production threshold, making use of the
1S0 and 3S1 phase shifts derived from the analyses of

2 The S-matrices at the four fixed points realize a representation
of the Klein four-group, Z2 ⌦ Z2.

Refs. [53–56]. The four regions indicated are distin-
guished by the role of non-perturbative physics. Region
I shows that entanglement power approaches zero in the
limit p ! 0, as will be the case for any finite range inter-
action not at unitarity. At momenta around the scale
of the inverse scattering lengths, region II, poles and
resonances of Ŝ produce highly-entangling interactions.
This non-perturbative structure could be considered a
source of ultra-low-momentum entanglement power; ex-
perimental evidence for this is expected to be found in
the vanishing modification of np-scattering quantum cor-
relations at 19.465(42) MeV where the phase shifts dif-
fer by ⇡/2 and |p ", n #i scatters into |p #, n "i. In re-
gion IV, where energies are of order the chiral symme-
try breaking scale, the entangling interactions of quark
and gluon degrees of freedom become prominent. It is
region III that is the main focus of this paper—away
from the far-infrared structure but with nucleons as fun-
damental degrees of freedom, the entanglement power
is suppressed. Once relativistic corrections and 3S1-3D1

mixing—parametrically suppressed at low-energy—are
included in Eq. (19), E(Ŝ) is expected to remain sup-
pressed but non-zero, indicating that the entanglement
suppression in nature is only partial.
Much progress has been made in nuclear physics in re-

cent years by considering low-energy e↵ective field theo-
ries (EFTs), constrained by data from nucleon scattering.
The �0,1 phase shifts can be computed for energies below
the pion mass, from the pionless EFT for nucleon-nucleon
interactions. The leading interaction in the e↵ective La-
grangian is

Lnf=2

LO
= �1

2
CS(N

†N)2� 1

2
CT

�
N†�N

�
·
�
N†�N

�
, (4)

where N represents both spin states of the proton and
neutron fields. These interactions can be re-expressed as
contact interactions in the 1S0 and 3S1 channels with cou-
plings C0 = (CS�3CT ) and C1 = (CS+CT ) respectively,
where the two couplings are fit to reproduce the 1S0 and
3S1 scattering lengths. The C coe�cients both run with
the renormalization group as described in Ref. [58, 59]
with a stable IR fixed point at C = 0, corresponding to
free particles, and a nontrivial, unstable IR fixed point
at C = C? corresponding to a divergent scattering length
and constant phase shift of � = ⇡/2 (the “unitary” fixed
point). At the four fixed points (described above), where
{C0, C1} take the values 0 or C?, the theory has a con-
formal (“Schrödinger”) symmetry; there is also a fixed
line of enhanced symmetry at CT = 0, or equivalently
C0 = C1, where the theory possesses the Wigner SU(4)
symmetry, as apparent from the form of Eq. (4) with
CT = 0. When fitting to the scattering lengths one
finds CT ⌧ CS ' C?, since scattering lengths are un-
naturally large in both channels. Therefore, low-energy
QCD has approximate SU(4) symmetry and sits close
to the {C?, C?} conformal fixed point [60]. The emer-
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function of p, the center-of-mass nucleon momentum. The 1S0

and 3S1 phase shifts used to calculate E(Ŝ) were taken from
four di↵erent models [53–57] to provide a näıve estimate of
systematic uncertainties. Data for this figure may be found
in Table II in the supplemental material.

| outih out| with | outi = Ŝ| ini. By describing the av-
erage action of Ŝ to transition a tensor-product state to
an entangled state, the entanglement power expresses a
state-independent entanglement measure that vanishes
when | outi remains a tensor product state for any | ini.

Following the analysis of Ref. [20], we consider the
spin-space entanglement of two distinguishable particles,
the proton and neutron for nf = 2 QCD. Neglecting the
small tensor-force-induced mixing of the 3S1 channel with
the 3D1 channel, the S-matrix for low-energy scattering
below inelastic threshold in these sectors can be decom-
posed as
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that the entanglement power of Ŝ is
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which vanishes when �1 � �0 = m⇡
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for any integer m.

This includes the SU(4) symmetric case �1 = �0 where
the coe�cient of �̂·�̂ vanishes. Special fixed points where
the entanglement power vanishes occur when the phase
shifts both vanish, �1 = �0 = 0, or are both at unitarity,
�1 = �0 = ⇡
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, or when �1 = 0, �0 = ⇡

2
or �1 = ⇡
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, �0 =

0. The S-matrices at these fixed points with vanishing
entanglement power are Ŝ = ±1̂ and ±(1̂+ �̂ · �̂)/2 2.

The entanglement power in nature is plotted in Fig. 1
as a function of the center-of-mass nucleon momentum,
p, up to pion production threshold, making use of the
1S0 and 3S1 phase shifts derived from the analyses of

2 The S-matrices at the four fixed points realize a representation
of the Klein four-group, Z2 ⌦ Z2.

Refs. [53–56]. The four regions indicated are distin-
guished by the role of non-perturbative physics. Region
I shows that entanglement power approaches zero in the
limit p ! 0, as will be the case for any finite range inter-
action not at unitarity. At momenta around the scale
of the inverse scattering lengths, region II, poles and
resonances of Ŝ produce highly-entangling interactions.
This non-perturbative structure could be considered a
source of ultra-low-momentum entanglement power; ex-
perimental evidence for this is expected to be found in
the vanishing modification of np-scattering quantum cor-
relations at 19.465(42) MeV where the phase shifts dif-
fer by ⇡/2 and |p ", n #i scatters into |p #, n "i. In re-
gion IV, where energies are of order the chiral symme-
try breaking scale, the entangling interactions of quark
and gluon degrees of freedom become prominent. It is
region III that is the main focus of this paper—away
from the far-infrared structure but with nucleons as fun-
damental degrees of freedom, the entanglement power
is suppressed. Once relativistic corrections and 3S1-3D1

mixing—parametrically suppressed at low-energy—are
included in Eq. (19), E(Ŝ) is expected to remain sup-
pressed but non-zero, indicating that the entanglement
suppression in nature is only partial.
Much progress has been made in nuclear physics in re-

cent years by considering low-energy e↵ective field theo-
ries (EFTs), constrained by data from nucleon scattering.
The �0,1 phase shifts can be computed for energies below
the pion mass, from the pionless EFT for nucleon-nucleon
interactions. The leading interaction in the e↵ective La-
grangian is

Lnf=2

LO
= �1

2
CS(N

†N)2� 1

2
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�
N†�N
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·
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, (4)

where N represents both spin states of the proton and
neutron fields. These interactions can be re-expressed as
contact interactions in the 1S0 and 3S1 channels with cou-
plings C0 = (CS�3CT ) and C1 = (CS+CT ) respectively,
where the two couplings are fit to reproduce the 1S0 and
3S1 scattering lengths. The C coe�cients both run with
the renormalization group as described in Ref. [58, 59]
with a stable IR fixed point at C = 0, corresponding to
free particles, and a nontrivial, unstable IR fixed point
at C = C? corresponding to a divergent scattering length
and constant phase shift of � = ⇡/2 (the “unitary” fixed
point). At the four fixed points (described above), where
{C0, C1} take the values 0 or C?, the theory has a con-
formal (“Schrödinger”) symmetry; there is also a fixed
line of enhanced symmetry at CT = 0, or equivalently
C0 = C1, where the theory possesses the Wigner SU(4)
symmetry, as apparent from the form of Eq. (4) with
CT = 0. When fitting to the scattering lengths one
finds CT ⌧ CS ' C?, since scattering lengths are un-
naturally large in both channels. Therefore, low-energy
QCD has approximate SU(4) symmetry and sits close
to the {C?, C?} conformal fixed point [60]. The emer-
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FIG. 1. The entanglement power, E(Ŝ), of the S-matrix as a
function of p, the center-of-mass nucleon momentum. The 1S0

and 3S1 phase shifts used to calculate E(Ŝ) were taken from
four di↵erent models [53–57] to provide a näıve estimate of
systematic uncertainties. Data for this figure may be found
in Table II in the supplemental material.

| outih out| with | outi = Ŝ| ini. By describing the av-
erage action of Ŝ to transition a tensor-product state to
an entangled state, the entanglement power expresses a
state-independent entanglement measure that vanishes
when | outi remains a tensor product state for any | ini.

Following the analysis of Ref. [20], we consider the
spin-space entanglement of two distinguishable particles,
the proton and neutron for nf = 2 QCD. Neglecting the
small tensor-force-induced mixing of the 3S1 channel with
the 3D1 channel, the S-matrix for low-energy scattering
below inelastic threshold in these sectors can be decom-
posed as
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�̂↵ ⌦ �̂↵. It follows

that the entanglement power of Ŝ is

E(Ŝ) = 1
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sin2 (2(�1 � �0)) , (3)

which vanishes when �1 � �0 = m⇡
2
for any integer m.

This includes the SU(4) symmetric case �1 = �0 where
the coe�cient of �̂·�̂ vanishes. Special fixed points where
the entanglement power vanishes occur when the phase
shifts both vanish, �1 = �0 = 0, or are both at unitarity,
�1 = �0 = ⇡

2
, or when �1 = 0, �0 = ⇡

2
or �1 = ⇡
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, �0 =

0. The S-matrices at these fixed points with vanishing
entanglement power are Ŝ = ±1̂ and ±(1̂+ �̂ · �̂)/2 2.

The entanglement power in nature is plotted in Fig. 1
as a function of the center-of-mass nucleon momentum,
p, up to pion production threshold, making use of the
1S0 and 3S1 phase shifts derived from the analyses of

2 The S-matrices at the four fixed points realize a representation
of the Klein four-group, Z2 ⌦ Z2.

Refs. [53–56]. The four regions indicated are distin-
guished by the role of non-perturbative physics. Region
I shows that entanglement power approaches zero in the
limit p ! 0, as will be the case for any finite range inter-
action not at unitarity. At momenta around the scale
of the inverse scattering lengths, region II, poles and
resonances of Ŝ produce highly-entangling interactions.
This non-perturbative structure could be considered a
source of ultra-low-momentum entanglement power; ex-
perimental evidence for this is expected to be found in
the vanishing modification of np-scattering quantum cor-
relations at 19.465(42) MeV where the phase shifts dif-
fer by ⇡/2 and |p ", n #i scatters into |p #, n "i. In re-
gion IV, where energies are of order the chiral symme-
try breaking scale, the entangling interactions of quark
and gluon degrees of freedom become prominent. It is
region III that is the main focus of this paper—away
from the far-infrared structure but with nucleons as fun-
damental degrees of freedom, the entanglement power
is suppressed. Once relativistic corrections and 3S1-3D1

mixing—parametrically suppressed at low-energy—are
included in Eq. (19), E(Ŝ) is expected to remain sup-
pressed but non-zero, indicating that the entanglement
suppression in nature is only partial.
Much progress has been made in nuclear physics in re-

cent years by considering low-energy e↵ective field theo-
ries (EFTs), constrained by data from nucleon scattering.
The �0,1 phase shifts can be computed for energies below
the pion mass, from the pionless EFT for nucleon-nucleon
interactions. The leading interaction in the e↵ective La-
grangian is

Lnf=2

LO
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2
CS(N

†N)2� 1

2
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N†�N
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·
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, (4)

where N represents both spin states of the proton and
neutron fields. These interactions can be re-expressed as
contact interactions in the 1S0 and 3S1 channels with cou-
plings C0 = (CS�3CT ) and C1 = (CS+CT ) respectively,
where the two couplings are fit to reproduce the 1S0 and
3S1 scattering lengths. The C coe�cients both run with
the renormalization group as described in Ref. [58, 59]
with a stable IR fixed point at C = 0, corresponding to
free particles, and a nontrivial, unstable IR fixed point
at C = C? corresponding to a divergent scattering length
and constant phase shift of � = ⇡/2 (the “unitary” fixed
point). At the four fixed points (described above), where
{C0, C1} take the values 0 or C?, the theory has a con-
formal (“Schrödinger”) symmetry; there is also a fixed
line of enhanced symmetry at CT = 0, or equivalently
C0 = C1, where the theory possesses the Wigner SU(4)
symmetry, as apparent from the form of Eq. (4) with
CT = 0. When fitting to the scattering lengths one
finds CT ⌧ CS ' C?, since scattering lengths are un-
naturally large in both channels. Therefore, low-energy
QCD has approximate SU(4) symmetry and sits close
to the {C?, C?} conformal fixed point [60]. The emer-
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| outih out| with | outi = Ŝ| ini. By describing the av-
erage action of Ŝ to transition a tensor-product state to
an entangled state, the entanglement power expresses a
state-independent entanglement measure that vanishes
when | outi remains a tensor product state for any | ini.

Following the analysis of Ref. [20], we consider the
spin-space entanglement of two distinguishable particles,
the proton and neutron for nf = 2 QCD. Neglecting the
small tensor-force-induced mixing of the 3S1 channel with
the 3D1 channel, the S-matrix for low-energy scattering
below inelastic threshold in these sectors can be decom-
posed as
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�̂↵ ⌦ �̂↵. It follows

that the entanglement power of Ŝ is

E(Ŝ) = 1
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sin2 (2(�1 � �0)) , (3)

which vanishes when �1 � �0 = m⇡
2
for any integer m.

This includes the SU(4) symmetric case �1 = �0 where
the coe�cient of �̂·�̂ vanishes. Special fixed points where
the entanglement power vanishes occur when the phase
shifts both vanish, �1 = �0 = 0, or are both at unitarity,
�1 = �0 = ⇡

2
, or when �1 = 0, �0 = ⇡

2
or �1 = ⇡
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, �0 =

0. The S-matrices at these fixed points with vanishing
entanglement power are Ŝ = ±1̂ and ±(1̂+ �̂ · �̂)/2 2.

The entanglement power in nature is plotted in Fig. 1
as a function of the center-of-mass nucleon momentum,
p, up to pion production threshold, making use of the
1S0 and 3S1 phase shifts derived from the analyses of

2 The S-matrices at the four fixed points realize a representation
of the Klein four-group, Z2 ⌦ Z2.

Refs. [53–56]. The four regions indicated are distin-
guished by the role of non-perturbative physics. Region
I shows that entanglement power approaches zero in the
limit p ! 0, as will be the case for any finite range inter-
action not at unitarity. At momenta around the scale
of the inverse scattering lengths, region II, poles and
resonances of Ŝ produce highly-entangling interactions.
This non-perturbative structure could be considered a
source of ultra-low-momentum entanglement power; ex-
perimental evidence for this is expected to be found in
the vanishing modification of np-scattering quantum cor-
relations at 19.465(42) MeV where the phase shifts dif-
fer by ⇡/2 and |p ", n #i scatters into |p #, n "i. In re-
gion IV, where energies are of order the chiral symme-
try breaking scale, the entangling interactions of quark
and gluon degrees of freedom become prominent. It is
region III that is the main focus of this paper—away
from the far-infrared structure but with nucleons as fun-
damental degrees of freedom, the entanglement power
is suppressed. Once relativistic corrections and 3S1-3D1

mixing—parametrically suppressed at low-energy—are
included in Eq. (19), E(Ŝ) is expected to remain sup-
pressed but non-zero, indicating that the entanglement
suppression in nature is only partial.
Much progress has been made in nuclear physics in re-

cent years by considering low-energy e↵ective field theo-
ries (EFTs), constrained by data from nucleon scattering.
The �0,1 phase shifts can be computed for energies below
the pion mass, from the pionless EFT for nucleon-nucleon
interactions. The leading interaction in the e↵ective La-
grangian is
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= �1

2
CS(N
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where N represents both spin states of the proton and
neutron fields. These interactions can be re-expressed as
contact interactions in the 1S0 and 3S1 channels with cou-
plings C0 = (CS�3CT ) and C1 = (CS+CT ) respectively,
where the two couplings are fit to reproduce the 1S0 and
3S1 scattering lengths. The C coe�cients both run with
the renormalization group as described in Ref. [58, 59]
with a stable IR fixed point at C = 0, corresponding to
free particles, and a nontrivial, unstable IR fixed point
at C = C? corresponding to a divergent scattering length
and constant phase shift of � = ⇡/2 (the “unitary” fixed
point). At the four fixed points (described above), where
{C0, C1} take the values 0 or C?, the theory has a con-
formal (“Schrödinger”) symmetry; there is also a fixed
line of enhanced symmetry at CT = 0, or equivalently
C0 = C1, where the theory possesses the Wigner SU(4)
symmetry, as apparent from the form of Eq. (4) with
CT = 0. When fitting to the scattering lengths one
finds CT ⌧ CS ' C?, since scattering lengths are un-
naturally large in both channels. Therefore, low-energy
QCD has approximate SU(4) symmetry and sits close
to the {C?, C?} conformal fixed point [60]. The emer-
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| outih out| with | outi = Ŝ| ini. By describing the av-
erage action of Ŝ to transition a tensor-product state to
an entangled state, the entanglement power expresses a
state-independent entanglement measure that vanishes
when | outi remains a tensor product state for any | ini.

Following the analysis of Ref. [20], we consider the
spin-space entanglement of two distinguishable particles,
the proton and neutron for nf = 2 QCD. Neglecting the
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This includes the SU(4) symmetric case �1 = �0 where
the coe�cient of �̂·�̂ vanishes. Special fixed points where
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p, up to pion production threshold, making use of the
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Refs. [53–56]. The four regions indicated are distin-
guished by the role of non-perturbative physics. Region
I shows that entanglement power approaches zero in the
limit p ! 0, as will be the case for any finite range inter-
action not at unitarity. At momenta around the scale
of the inverse scattering lengths, region II, poles and
resonances of Ŝ produce highly-entangling interactions.
This non-perturbative structure could be considered a
source of ultra-low-momentum entanglement power; ex-
perimental evidence for this is expected to be found in
the vanishing modification of np-scattering quantum cor-
relations at 19.465(42) MeV where the phase shifts dif-
fer by ⇡/2 and |p ", n #i scatters into |p #, n "i. In re-
gion IV, where energies are of order the chiral symme-
try breaking scale, the entangling interactions of quark
and gluon degrees of freedom become prominent. It is
region III that is the main focus of this paper—away
from the far-infrared structure but with nucleons as fun-
damental degrees of freedom, the entanglement power
is suppressed. Once relativistic corrections and 3S1-3D1

mixing—parametrically suppressed at low-energy—are
included in Eq. (19), E(Ŝ) is expected to remain sup-
pressed but non-zero, indicating that the entanglement
suppression in nature is only partial.
Much progress has been made in nuclear physics in re-

cent years by considering low-energy e↵ective field theo-
ries (EFTs), constrained by data from nucleon scattering.
The �0,1 phase shifts can be computed for energies below
the pion mass, from the pionless EFT for nucleon-nucleon
interactions. The leading interaction in the e↵ective La-
grangian is
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where N represents both spin states of the proton and
neutron fields. These interactions can be re-expressed as
contact interactions in the 1S0 and 3S1 channels with cou-
plings C0 = (CS�3CT ) and C1 = (CS+CT ) respectively,
where the two couplings are fit to reproduce the 1S0 and
3S1 scattering lengths. The C coe�cients both run with
the renormalization group as described in Ref. [58, 59]
with a stable IR fixed point at C = 0, corresponding to
free particles, and a nontrivial, unstable IR fixed point
at C = C? corresponding to a divergent scattering length
and constant phase shift of � = ⇡/2 (the “unitary” fixed
point). At the four fixed points (described above), where
{C0, C1} take the values 0 or C?, the theory has a con-
formal (“Schrödinger”) symmetry; there is also a fixed
line of enhanced symmetry at CT = 0, or equivalently
C0 = C1, where the theory possesses the Wigner SU(4)
symmetry, as apparent from the form of Eq. (4) with
CT = 0. When fitting to the scattering lengths one
finds CT ⌧ CS ' C?, since scattering lengths are un-
naturally large in both channels. Therefore, low-energy
QCD has approximate SU(4) symmetry and sits close
to the {C?, C?} conformal fixed point [60]. The emer-
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1. Implications of spin-flavor symmetry in effective nuclear forces

Short distance nuclear forces relevant for low energy processes can be incorporated

into chiral Lagrangians in terms of local operators in a derivative expansion [1,2]. There

are two leading (dimension six) operators involving nucleons alone, given by

L6 = −1
2CS(N †N)2 − 1

2CT (N †σ⃗N)2 (1.1)

where N are isodoublet two-component spinors, and the σ⃗ are Pauli matrices. Higher

derivative operators account for the spin-orbit coupling, among other effects1. Including

the ∆ isobars in the theory leads to 18 independent dimension six operators allowed by spin

and isospin symmetry2. In order to discuss hypernuclei, or strangeness in dense matter,

one must consider SU(3) flavor multiplets — there are six independent leading operators

involving the baryon octet alone [3], while including the decuplet inflates the number to 28

independent operators. The number of independent dimension seven interactions is still

much greater.

Clearly, to make headway in a systematic effective field theory analysis of nuclear and

hypernuclear forces, it is desirable to find some simplifying principle. In this letter we

propose that among the baryon interactions, SU(4) spin-flavor symmetry for two flavors,

or SU(6) symmetry for three flavors should be a good approximation. We show how these

symmetries have a vastly simplifying effect on the dimension six interactions described

above, reducing both the 18 N−∆ interactions and the 28 octet-decuplet interactions down

to just two independent operators. We support our allegation that spin-flavor symmetry is

relevant to nuclear forces first by outlining its implications and by giving empirical evidence

in support of SU(4) in nuclei. Then we prove that these symmetries become exact in the

large-N limit of QCD.

1 In low energy nucleon-nucleon scattering the higher derivative terms will be less important

than the leading operator. However, many-body effects in large nuclei can enhance the importance

of subleading operators, such as the spin-orbit interaction.
2 It is simplest to count operators in the form (ψ1ψ2)(ψ3ψ4)

†, requiring (ψ1ψ2) and (ψ3ψ4) to

have the same spin and isospin quantum numbers. One finds the above two (NN)(NN)† operators;

zero operators of the form (NN)(N∆)†; two (NN)(∆∆)†, four (N∆)(N∆)†, two (N∆)(∆∆)†,

and eight (∆∆)(∆∆)† operators.

1

1S0 : C̄0 = (CS � 3CT )
3S1 : C̄1 = (CS + CT )

Alternatively: look at the space of low energy EFTs for pcm < mπ/2

Conformal fixed points 
(infinite scattering lengths)

SU(4)Wigner symmetry line
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Other definitions of entanglement power also explored

Can show in each case:  

• SU(4)Wigner   for Nf=2 

• SU(16)  for Nf=3 

• Conformal symmetry, for Nf=2,3

Are sufficient to ensure zero entanglement power for the S-matrix 

… and probably necessary.
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Conclusions:

There are apparent approximate symmetries w/o explanation in the 
strong interactions: 

• non-quark spin-flavor symmetries 
• NR conformal (Schrödinger) symmetries

Can ascribe an “entanglement power” to the S-matrix which knows 
about flavor & spin changing interactions

Entanglement is minimized for flavors & spin diagonal interactions, 
as well as for conformal fixed points

Can symmetries be explained by dynamical systems “wanting” to 
minimize entanglement?

Need to examine more examples; model examples with feedback 
mechanism


